书名:ProbabilisticMachineLearning 作者:KevinP.Murphy 出版社:TheMITPress 译者: 出版日期:2022-3 页数:864 ISBN:9780262046824 | 0.0 豆瓣评分 | 当当购书 | AI搜索 | B站搜索 | 百度搜索 |
Adetailedandup-to-dateintroductiontomachinelearning,presentedthroughtheunifyinglensofprobabilisticmodelingandBayesiandecisiontheory.
Thisbookoffersadetailedandup-to-dateintroductiontomachinelearning(includingdeeplearning)throughtheunifyinglensofprobabilisticmodelingandBayesiandecisiontheory.Thebookcoversmathematicalbackground(includinglinearalgebraandoptimization),basicsupervisedlearning(includinglinearandlogisticregressionanddeepneuralnetworks),aswellasmoreadvancedtopics(includingtransferlearningandunsupervisedlearning).End-of-chapterexercisesallowstudentstoapplywhattheyhavelearned,andanappendixcoversnotation.
ProbabilisticMachineLearninggrewoutoftheauthor’s2012book,MachineLearning:AProbabilisticPerspective.Morethanjustasimpleupdate,thisisacompletelynewbookthatreflectsthedramaticdevelopmentsinthefieldsince2012,mostnotablydeeplearning.Inaddition,thenewbookisaccompaniedbyonlinePythoncode,usinglibrariessuchasscikit-learn,JAX,PyTorch,andTensorflow,whichcanbeusedtoreproducenearlyallthefigures;thiscodecanberuninsideawebbrowserusingcloud-basednotebooks,andprovidesapracticalcomplementtothetheoreticaltopicsdiscussedinthebook.Thisintroductorytextwillbefollowedbyasequelthatcoversmoreadvancedtopics,takingthesameprobabilisticapproach.
温如筠 题主采纳答案
*** 只允许题主本人可见 *** 30 雅币偷看